Zero Emissions Syngas Combustor Test: Chemical Kinetics Experiments and Support

Sean P. Cooper, Olivier Mathieu, Mattias Turner, and Eric L. Petersen

TEES Turbomachinery Laboratory

J. Mike Walker '66 Department of Mechanical Engineering

Artie McFerrin Department of Chemical Engineering

Texas A&M University

2021 UTSR Project Review Meeting

8 - 10 November, 2021

Background

Much Prior Work with UTSR and PSI on H₂- and sCO2-Related Combustion Over Past 17 Years

- UTSR Project (2004-2008) Chemical Kinetics of Gas Turbine Fuel Blends
- UTSR Project (2010-2013) High-Hydrogen Fuels with Impurities
- UTSR Project (2013-2017) Syngas Fuel Turbulent Flame Speeds and Kinetics

 With PSI (2012-2015) – Chemical Kinetics and Diagnostics Support for sCO2 Combustor Design and Testing up to 300 bar 24+ Journal &

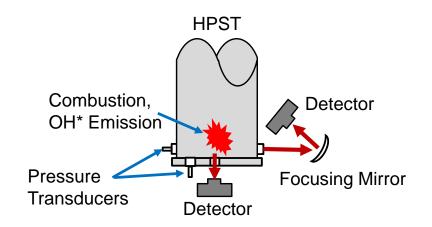
44+ Conf. Papers

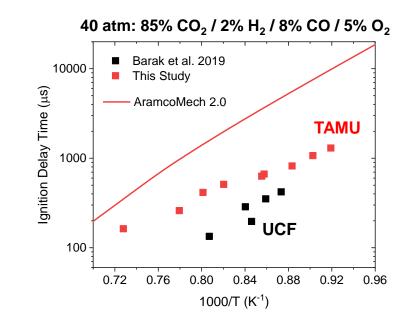
Kinetics Experiments & Support

AM

TAMU Team is Supporting Current PSI-Led sCO2 Combustor Project

1. Chemical Kinetics Support

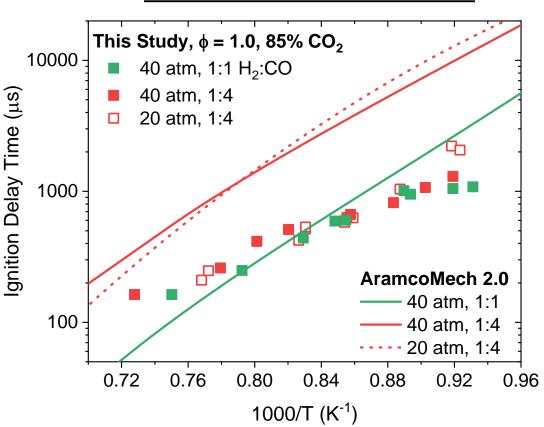

- Assessment of work to date
- Identify detailed mechanism for PSI efforts
- Kinetics support for PSI numerical modeling efforts


2. Shock-Tube Experiments

- Assess related Ignition Delay Time data from literature
- Matrix of H₂/CO + CO₂ tests to improve model predictions
- Detailed species time histories using laser absorption

3. Flame Propagation Experiments

- Assess related Flame Speed data from literature
- Matrix of H₂/CO + CO₂ tests to improve model prediction



Kinetics Experiments & Support

One Region of H_2 :CO + CO₂ Space Points to Area for Improvement

Recent Shock-Tube Results

- New Data for 50/50 & 20/80 H₂:CO
- No real difference at 20-40 atm or with H₂:CO
- Model captures pressure effect but not H₂:CO effect
- Possible update needed to rate used for reaction $CO+HO_2 = CO_2+OH$
- Also: practical combustor design simulations using detailed kinetics not very sensitive to reasonable changes in kinetics model

TURBOMACHINERY LABORATORY

Kinetics Experiments & Support

AM

Follow-On Short Matrix for New Ignition Delay Times Underway

Additional Novel Experiments for IDT:

- Design of Experiments test matrix, 3 levels (L9)
- Vary H₂:CO (0.25, 1, 2)
- Vary phi (0.5, 1, 2)
- Vary pressure (10, 25, 50 atm)

Conduct ignition experiments according to chart (pressure may change)

- First round highlighted: Underway
- Revise model using novel data as needed
- Matric to be completed by Dec. 2021

Data Set	Н2:СО	φ	Pressure (atm)
1	0.25	0.5	10
2	0.25	1	25
3	0.25	2	50
4	1	0.5	50
5	1	1	10
6	1	2	25
7	2	0.5	25
8	2	1	50
9	2	2	10

